Silver (I) ion – Ag+ as AgClO4
Percival, P.W., Roduner, E. and Fischer, H. Adv. Chem. Ser. 1979, 175, 335; ed. by H.J. Ache, ACS, Washington DC, 1979.
Reaction:
Ag+ + Mu → Ag0 + µ +
Type of reaction: reduction – inferred by analogy with H atom
kM = 1.6 × 1010 dm3mol-1s-1 pH = 1.0
KIE = kM / kH = 1.6 × 1010 / 2.0 × 1010 = 0.8
kH = (2.0 ± 0.8) × 1010 dm3mol-1s<-1 average of 2 values
from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Cyanide ion –CN- as KCN
Stadlbauer, J.M., Ng, B.W., Jean, Y.C. and Walker, D.C. J. Phys. Chem., 1983, 87, 841.
Reaction:
CN- + Mu → MuCN-
Type of reaction: addition to CN bond
kM = 3 × 109 dm3mol-1s-1 pH = 1.0
KIE = kM / kH = 3 × 109 / 4 × 109 = 0.75
kH = 4.1 × 109 dm3mol-1s-1 pH = 7.0
from: Anbar, M., Farhataziz and Ross, A.B. NSRDS-NBS 51 Washington, 1975
Thiocyanate ion – SCN- as NaSCN
Jean, Y.C., Brewer, J.H., Fleming, D.G., Garner, D.M., Mikula, R.J., Vaz, L.C. and Walker, D.C. Chem. Phys. Lett., 1978, 57, 293.
Reaction:
SCN- + Mu → MuSCN-
Type of reaction: addition
kM = 6 × 107 dm3mol-1s-1
KIE = kM / kH = 6 × 107 / 2.3 × 108 = 0.25
kH = 2.3 × 108 dm3mol-1s-1 pH = 1.0
from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Tetracyanocadmate (II) ion [Cd(CN)4]2- as K2Cd(CN)4
Stadlbauer, J.M., Ng, B.W., Jean, Y.C. and Walker, D.C. J. Phys. Chem., 1983, 87, 841.
Reaction:
[Cd(CN)4]2- + Mu → ?
Type of reaction: addition to CN
kM = 1.7 × 1010 dm3mol-1s-1
Ea = (15 ± 2) kJ mol-1 for T = 273 K to 353 K
KIE = kM / kH < 1.7 × 1010 / 2.4 × 109 < 7
kH > 2.4 × 109 dm3mol-1s-1 at pH = 5
from: Anbar, M., Farhataziz and Ross, A.B NSRDS-NBS 51 Washington, 1975.
Chromate (VI) ion – CrO42- as K2CrO4
Percival, P.W. Hyperfine Interact., 1981, 8, 315.
Reaction:
CrO42- + Mu → CrO42- + µ+
Type of reaction: reduction
kM = (2.4 ± 0.3) × 1010 dm3mol-1s-1
KIE = kM / kH = 2.4 × 1010 / 8.2 × 109 = p
kH = 8.2 × 109 dm3mol-1s-1 pH = 7 average of 2 value
from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Chromium (III) ion – Cr3+ as CrCl3
Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.
Reaction:
Cr3+ + Mu (↑↑) → Cr3+ + Mu(↑↓)
Type of reaction: presumed largely spin exchange
kM = 5.3 × 109 dm3mol-1s-1
KIEobs = kM / kH = 5.3 × 109 / 2 × 17 = 260
KIE indicates different type of reaction for Mu and H atoms
kH = 2 × 109 dm3mol-1s-1 pH = 3.5 – 5 average of 2 values
from: Anbar, M., Farhataziz and Ross, A.B. NSRDS-NBS 51 Washington, 1975.
Hexaaquachromium (III) ion – [Cr(H2O)6]3+
Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.
Reaction:
[Cr(H2O)6]3+ + Mu (↑↑) → [Cr(H2O)6]3+ + Mu (↑↓)
Type of reaction: spin exchange
kM = (8 ± 1) × 109 dm3mol-1s-1
kH – unknown
KIE – not available
Pentaaquachlorochromium (III) ion – [Cr(H2O)5Cl]2+
Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.
Reaction:
[Cr(H2O)5Cl]2+ + Mu (↑↑) → [Cr(H2O)5Cl]2+ + Mu (↑↓)
Type of reaction: spin exchange
kM = (7.5 ± 1.5) × 109 dm3mol-1s-1
kH – unknown
KIE – not available
Aqua(ethylenediaminetetracetate)chromium (III) ion – [Cr(EDTA)H2O]-
Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.
Reaction:
[Cr(EDTA)H2O)]-
+ Mu (↑↑) → [Cr(EDTA)H2O]- + Mu (↑↓)
Type of reaction: spin exchange
kM = (1.2 ± 0.4) × 1010
dm3mol-1s-1
kH – unknown
KIE – not available
Hexaamminechromium (III) ion – [Cr(NH3)6]3+
Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.
Reaction:
[Cr(NH3)3]3+ + Mu (↑↑) → [Cr(NH3)6]3+ + Mu (↑↓)
Type of reaction: spin exchange
kM = (9 ± 1) × 109 dm3mol-1s-1
kH – unknown
KIE – not available
Diaquabis(ethylenediamine)chromium (III) ion as [Cr(en)2(H2O)2]2(S2O6)3
Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.
Reaction:
[Cr(en)(H2O)2]3+ + Mu (↑↑) → [Cr(en)2(H2O)2]3+ + Mu (↑↓)
Type of reaction: spin exchange
kM = 1.05 × 1010 dm3mol-1s-1
kH – unknown
KIE – not available
Anion S2O22- present in this complex could possibly react with Mu therefore kM observed might be the upper limit
Tris (ethylenediamine) chromium (III) ion – [Cr(en)3]3+
Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.
Reaction:
[Cr(en)3]3+ + Mu (↑↑) → [Cr(en)3]3+ + Mu (↑↓)
Type of reaction: spin exchange
kM = (7.3 ± 2) × 109 dm3mol-1s-1
KH – unknown
KIE – not available
Diamminetetra(thiocyanato-N) chromium (III) ion – [Cr(NCS)4(NH3)2]-
Lazzarini, E., Stadlbauer, J.M., Venkateswaran, K., Gillis, H.A., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1994, 98, 8050.
Reaction:
[Cr(NCS)4(NH3)2]- + Mu (↑↑) → [Cr(NCS)4(NH3)2]- + Mu (↑↓)
Type of reaction: spin exchange
kM = (2.7 ± 0.5) × 1010 dm3mol-1s-1
KH – unknown
KIE – not available
Hexa(thiocyanato-N)chromium (III) ion [Cr(NCS)6]3- as K3[Cr(NCS)6]
Stadlbauer, J.M., Venkateswaran, K., Porter, G.B. and Walker, D.C. J. Phys. Chem., 1997, 101, 4741.
Reaction:
[Cr(NCS)6]3- + Mu (↑↑) → [Cr(NCS)6]3- + Mu (↑↓)
Type of reaction: spin exchange
kM = (3.1 ± 0.4) × 1010 dm3mol-1s-1
KH – unknown
KIE – not available
Copper (II) ion – Cu2+ as CuSO4
Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.
Reaction:
Cu2+ + Mu (↑↑) → Cu2+ + Mu (↑↓)
Cu2+ + Mu → Cu+ + µ+
Type of reaction: spin exchange and possibly also reduction
kMobs =( 6.5 ± 1.0) × 109 dm3mol-1s-1
KIE = kMobs / kH = 6.5 × 109 / 9.1 × 107 = 70
KIE value might indicate different type of reactions for Mu and H atoms
kH = 9.1 × 107 dm3mol-1s-1 average of 3 values
Iron (II) ion – Fe2+ as (NH4)2Fe2(SO4)3
Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.
Reaction:
Fe2+ + Mu (↑↑) → Fe2+ + Mu (↑↓)
Fe2+ + Mu → Fe+ + µ+ or ( FeMu2+ )
Type of reaction: predominantly spin exchange and possibly (?) also reduction
kM = 1.2 × 1010 dm3mol-1s-1
KIE = kM / kH = 1.2 × 1010 / 7.5 × 106 = 1600
KIE value do indicate different type of reactions for Mu and H atoms
kH = 7.5 × 106 dm3mol-1s-1 pH = 0
from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Ferrocyanide ion [Fe(CN)6]4-, hexacyanoferrate (II) as K4Fe(CN)6
Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.
Reaction:
[Fe(CN)6]4- + Mu → ?
Type of reaction: reduction or addition to CN-
kM = 3.05 × 108
dm3mol-1s-1
KIE = kM / kH = 3.0 × 108 / 3.9 × 107
» 8
kH = 3.9 x 107 dm3mol-1s-1
from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Iron (III) ion – Fe3+ as Fe(NH4)(SO4)2
Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.
Reaction:
Fe3+ + Mu (↑↑) → Fe3+ + Mu (↑↓)
Type of reaction: predominantly spin exchange with small contribution of reduction
kMobs
= 5.5 × 109
dm3mol-1s-1
KIE = kMobs / kH = 5.5 × 109
/ 1.4 × 106
» 4000
KIE value do indicate different type of reactions for Mu and H atoms
kH = 1.4 × 106
dm3mol-1s-1
average of 2 values
from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Ferricyanide ion, hexacyanoferrate (III) ion – [Fe(CN)6]3-
Reaction:
[Fe(CN)6]3- + Mu → ?
Type of reaction: reduction with small contribution of spin exchange (?)
a) Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.
kM = 2 × 1010 dm3mol-1s-1 at pH = 7
b) from: Venkateswaran, K., Barnabas, M.V., Ng, B.W. and Walker, D.C., Can. J. Chem., 1988, 66, 1979.
kM
= 3.2 × 1010 dm3mol-2s-1
at pH = 1 (small pH effect)
KIE = kMobs / kH = 2 × 1010
/ 6.3 × 109
» 3 at pH = 7
KIE = 3.2 × 1010
/ 6.3 × 109 » 5 at pH = 1
kH = 6.3 × 109
dm3mol-1s-1 selected value from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Muonium reactions in the micellar systems
kM = 2 × 1010 dm3mol-1s-1 in the NaOSA micelles
from: Jean, Y.C., Ng, B.W., Stadlbauer, I.M. and Walker, D.C., J. Chem. Phys., 1981, 75, 2879.
Mercury (II) chloride – HgCl2
Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.
Reaction:
HgCl2
+ Mu → HgCl + m+
+ Cl-
as proposed for H atom reaction
Type of reaction: reduction (?)
kM
= 2.0 × 109
dm3mol-1s-1
KIE = kM
/ kH = 2 × 109
/ 1 × 1010
= 0.2
kM
= (1 ± 0.5) × 1010
dm3mol-1s-1
from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Iodine – I2
Jean, Y.C., Ng, B.W., Ito, Y., Nguyen, T.G. and Walker, D.C. Hyperfine Interact., 1981, 8, 351.
Reaction:
I2 + Mu → MuI + I
I2 + Mu → m+ + I2-
Type of reaction: abstraction or reduction
kM
= (1.7 ± 0.3) × 1010 dm3mol-1s-1
KIE = kM
/ kH = 1.7 × 1010 / 3.5 × 1010 = 0.5
kH = 3.5 × 1010
dm3mol-1s-1
from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Muonium reactions in the micellar systems
kM
= (4.1 ± 1.0) × 1010
dm3mol-1s-1
in the NaOSA micelles
kM
= (4.0 ± 0.9) × 1010
dm3mol-1s-1
in the NaHS micelles
kM
= (5.0 ± 0.8) × 1010
dm3mol-1s-1
in the NaLS micelles
from: Jean, Y.C., Ng, B.W., Stadlbauer, I.M. and Walker, D.C., J. Chem. Phys., 1981, 75, 2879.
Triiodine ion – I3- as KI3
Jean, Y.C., Ng, B.W., Ito, Y., Nguyen, T.G. and Walker, D.C. Hyperfine Interact., 1981, 8, 351.
Reaction:
I3-
+ Mu → I-
+ I2-
+ µ+
Type of reaction: ?
kM = (5.9 ± 1.2) × 1010
dm3mol-1s-1
KIE = kM / kH = 5.9 × 1010
/ 2.2 × 1010
= 2.7
kH = 2.2 × 1010
dm3mol-1s-1 average from all values in: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Iodide ion – I- as KI or NaI
Reaction:
I-
+ Mu ↔ MuI-
Type of reaction: addition (based on H-atom scheme)
a) Bartels, D.M. and Roduner, E. Chem. Phys., 1996, 203, 339.
kM
= 5.3 × 107
dm3mol-1s-1
Ea
» 0 kJ/mol-1
(EA
= -5.6 ± 1.8 kJ/mol) for T=278 to 363K
KIEM/H
= kM
/ kH = 5.3 × 107
/ 2.8 × 108
= 0.20
KIEM/D
= kH/kD
= 5.3 × 107
/ 3.2 × 108
= 0.16
b) Jean, Y.C., Ng, B.W., Ito, Y., Nguyen, T.G. and Walker, D.C. Hyperfine Interact., 1981, 8, 351.
kM
= (7 ± 1) × 107
dm3mol-1s-1
KIE = kM
/ kH = 7 × 107
/ 3.4 × 108
= 0.25
kH = (2.8 ± 0.4) × 108
dm3mol-1s-1
kD
= 3.2 × 108
dm3mol-1s-1
from: Bartels, D.M. and Roduner, E. Chem. Phys., 1996, 203, 339.
Permanganate ion – MnO4- as KMnO4
Reaction:
MnO4-
+ Mu → [MnO4]2- + µ+
Type of reaction: electron transfer reduction
a) Percival, P.W., Roduner, E. and Fischer, H. Adv. Chem. Ser. 1979, 175, 335; ed. by H.J. Ache, ACS, Washington DC, 1979.
kM = 2.5 × 1010 dm3mol-1s-1 pH =7.0
b) Ng, B.W., Jean, Y.C., Ito, Y., Suzuki, T., Brewer, J.H., Fleming, D.G. and Walker, D.C. J. Phys. Chem., 1981, 85, 454.
kM
= 2.5 × 1010 dm3mol-1s-1
pH =7.0
A = (3.5 ± 0.3) × 1013
dm3mol-1s-1
Ea
= (18.4 ± 1.7) kJ mol-1
for: T = 276 K to 361 K
c) Barnabas, M.V. and Walker, D.C. Can. J. Chem., 1991, 69, 1252.
kM
= 1.7 × 1010
dm3mol-1s-1
pH =1.0 (small influence of pH)
KIE = kM
/ kH = 2.5 × 1010
/ 2.4 × 1010
= 1.0 at pH = 7.0
KIE = kM
/ kH = 1.7 × 1010
/ 2.4 × 1010
= 0.7 at pH = 1.0
kH ≤ 2.4 × 1010dm3mol-1s-1
at pH = 3 from: www.rcdc.nd.edu/compilations/Hatom/H.HTM
Muonium reactions at high pressures:
kM
values decrease with pressure applied (up to 2 kbars)
Activation volume calculated: DV¹ = 3.1 ± 1.6 cm3mol-1
for Mu + KMnO4
DV¹ = 2 cm3mol-1
for H + KMnO4
from: Brodovitch, J-C., Leung, S-K., Percival, P.W., Dake Yu. and Newman, K.E. Radiat. Phys. Chem., 1988, 1, 105.
Nitrous oxide
Venkateswaran, K., Barnabas, M., Wu, Z. and Walker, D.C. Radiat. Phys. Chem., 1988, 32, 65.
Reaction:
N2
O + Mu → N2 + MuO
Type of reaction: abstraction of O (by analogy to H atom reaction)
kM
= 6.5 × 107
dm3mol-1s-1
KIE = kM
/ kH = 6.5 × 107 / 2.1 × 106
= 30
kH = 2.1 × 106
dm3mol-1s-1
(in alkaline solution)
from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Nitrate ion NO3- as NaNO3
Reaction:
NO3- + Mu → [MuNO3-] → ( ? )
NO3-
+ Mu → NO2
+ MuO-
( ? )
Type of reaction: ?
a) Percival, P.W., Roduner, E., Fischer, H., Camani, M., Gygax, F.N.and Schenck, A. Chem. Phys. Lett., 1973, 47, 11.
kM = 1.5 x 109 dm3mol-1s-1
b) B.W., Jean, Y.C., Ito, Y., Suzuki, T., Brewer, J.H., Fleming, D.G. and Walker, D.C. J. Phys. Chem., 1988, 85, 454.
kM
= 1.5 × 109
dm3mol-1s-1
pH = 7.0
Ea = (6.3 ± 1.2) kJ mol-1
A = (2.1 ± 0.2) × 1010
dm3mol-1s-1 for T = 274 K to 365 K
c) Barnabas, M.V. and Walker, D.C. Can. J. Chem., 1991, 69, 1252.
kM
= 1.9 × 109
dm3mol-1s-1
pH = 1.0 (no effect of pH)
KIE = kM
/ kH = 1.5 × 109
/ 5.6 × 106
= 270 at pH = 1.0 and pH = 7.0
kH = 5.6 × 106
dm3mol-1s-1
at pH = 1.0
log(A/dm3mol-1s-1) = 15.28 ± 0.16 Ea
= (48.7 ± 1.0) kJ mol-1 for T = 288 to 358 K
kH , A and EA
from: Mezyk, S.P. and Bartels, D.M. J. Phys. Chem., 1997, 101, 6233.
Muonium reactions in the micellar systems:
kM
= 0.8 × 109
dm3mol-1s-1
in the SDDS micelles
kM
= 3.7 × 109
dm3mol-1s-1
in the DDTAB micelles
kM
= 1.5 × 109
dm3mol-1s-1
in the pEO micelles
from: Venkateswaran, K., Barnabas, M.V., Ng, B.W. and Walker, D.C., Can. J. Chem., 1988, 66, 1979.
Nitrite ion – NO2-
Karolczak, S., Gillis, H.A., Porter, G.B. and Walker, D.C. Can. J. Chem, 2003, 81, 175.
Reaction:
NO2 + Mu → Mu NO2 as proposed for H atoms
Type of reaction: addition (combination)
kM
= (8 ± 1.5) × 109
dm3mol-1s-1
KIE = kM
/ kH = 8 × 109
/ 1.6 × 109
= (5 ± 1)
kH = 1.6 × 109dm3mol-1s-1 log[A(dm3mol-1s-1)] = 11.94 ± 0.06
Ea
= (15.59 ± 0.36) kJ/mol-1
for T = 280 K to 360 K
Nickel (II) ion Ni2+ as NiSO4
Reaction:
Ni2+ + Mu (↑↑)→ Ni2+ + Mu (↑↓)
Type of reaction: spin conversion
a) Jean, Y.C., Brewer, J.H., Fleming, D.G. and Walker, D.C. Chem. Phys. Lett., 1978, 60, 125.
kMobs = 1.7 × 1010 dm3mol-1s-1
b) Ng, B.W., Jean, Y.C., Ito, Y., Suzuki, T., Brewer, J.H., Fleming, D.G. and Walker, D.C. J. Phys. Chem., 1981, 85, 454.
A = (0.9 ± 0.2) × 1013
dm3mol-1s-1
EA
= 16.0 ± 2.5 kJ mol-1
KIE = kMobs
/ kH > 1.7 × 1010
/ 3 × 105
> 5 × 104
KIE do indicate different type of reactions
kH < 3 × 105 dm3mol-1s-1 at pH natural, (limiting value)
from: https://www3.nd.edu/~ndrlrcdc/Compilations/HAtom/H.HTM
Tetraamminenickel (II) ion – [Ni(NH3)4]2+
Reaction: [Ni(NH3)4]2+
+ Mu (↑↑) → [Ni(NH3)4]2+
+ Mu (↑↓)
Ni2+
ion in the form of paramagnetic tetrahedral complex
Type of reaction: spin exchange
kM
= 1.5 × 1010
dm3mol-1s-1
in 1M NH3
solution
kH – unknown
KIE – not available
1,4,8,11-Tetraazacyclotetradecanenickel (II) ion, cyclamnickel (II) ion – [Ni(cyclam)]2+
as [Ni(cyclam)]2
PF6
Stadlbauer, J.M., Ng, B.W., Jean,Y.C. and Walker, D.C
J.Am.Chem.Soc. 1983, 105, 752
Reaction: [Ni(cyclam)]2+ + Mu → Ni[(cyclam)]+ + µ+
Ni2+ ion in the form of diamagnetic planar complex
Type of reaction: reduction (electron transfer) by analogy to H-atom reaction
kM
= 5 × 108 dm3mol-1s-1
kH – unknown for this specific complex but determined for similar solute
5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclo-tetradecanenickel (II) ion
kH = 3.2 × 108 dm3mol-1s-1
from: www.rcdc.nd.edu/compilations/Hatom/H.HTM
KIE = kM
/ kH = 5 × 108 / 3.2 × 108 = 1.5
1,4,8,12-Tetraazacyclotetradecanediamminonickel (II) ion
- Diamminocyclamnickel (II) ion – [Ni(cyclam)(NH3)2]2+
Stadlbauer, J.M., Ng, B.W., Jean,Y.C. and Walker, D.C
J.Am.Chem.Soc. 1983, 105, 752
Reaction: [Ni(cyclam)(NH3)2]2+ + Mu (↑↑) → [Ni(cyclam)(NH3)2]2+ + Mu (↑↓)
Ni2+ ion in the form of paramagnetic octahedral complex
Type of reaction: spin exchange
kM = 2 × 1010 dm3mol-1s-1
kH – unknown
KIE – not available
1,4,8,12-Tetraazacyclotetradecanediaquanickel (II) ion,
cyclamdiaquanickel (II) ion – [Ni(cyclam)(H2O)2]2+
Stadlbauer, J.M., Ng, B.W., Jean,Y.C. and Walker, D.C
J.Am.Chem.Soc. 1983, 105, 752
Reaction: Ni[(cyclam)(H2O)2]2+ + Mu (↑↑) → Ni[(cyclam)(H2O)2]2+ + Mu (↑↓)
Ni2+
ion in the form of paramagnetic octahedral complex
Type of reaction: spin exchange
kM = 4.5 × 1010 dm3mol-1s-1
KIE = unknown
accepting k (H + Ni2+) < 3 × 105
dm3mol-1s-1
from: www.rcdc.nd.edu/compilations/Hatom/H.HTM
leads to KIE > 105
which manifests different type of reactions
Hydroxide ion – OHaq-
as NaOH or KOH
Reaction: OHaq-
+ Mu → MuOH + eaq-
Type of reaction: acid, m+ transfer
a) Percival, P.W., Roduner, E., Fischer, H., Camani, M., Gygax, F.N.
and Schenck, A. Chem. Phys. Lett., 1973, 47.
kM
= (9.1 ± 1.2) x 106 dm3mol-1s-1 [OH-]max = 0.38 M
kM
– calculated on the basis of activities rather than molar concentration
b) Percival, P.W., Roduner, E. and Fischer, H.
in Adv. Chem. Ser. 1979, 175, 335; ed. by H.J. Ache, ACS,
Washington DC, 1979.
kM
= 1.7 × 107 dm3mol-1s-1 pH range not stated
c) Ng, B.W., Stadlbauer, J.M. and Walker, D.C.
J. Phys. Chem., 1984, 88, 857.
kM
= 1.7 × 107 dm3mol-1s-1 [OH]max = 0.08 M
A = (2.4 ± 0.1) × 1014 dm3mol-1s-1
EA = (40 ± 5) kJ mol-1 for T = 247 K to 357 K
KIE = kM
/ kH = 1.7 × 107 / 2.5 × 107 » 0.7
kH = (2.51 ± 0.44) × 107 dm3mol-1s-1 A = (1.33 ± 0.16) × 1014 dm3mol-1s-1)
EA = (38.38 ± 0.31) kJ mol-1 for T ~ 286 K to 345 K
from: Han, P. and Bartels, D.M., J. Phys. Chem., 1992, 96, 4899.
latest entry to: www.rcdc.nd.edu/compilations/Hatom/H.HTM
Deuterium peroxide – D2O2
Percival, P.W., Brodovitch, J.C. and Newman, K.E.
NBS Special Publication (US) 1986, 716, 547.
Reaction: D2O2 + Mu → MuD + DO2
D2O2 + Mu ® MuO + D2O2
Type of reaction: abstraction of D or O (abstraction of D proposed to D atom reaction)
kM = 1.4 x 109 dm3mol-1s-1 pH = 2.6
Ea » 11kJ mol-1
KIE = kM / kD = 1.4 × 109 / 2.3 × 107 = 60
kD = (2.30 ± 0.10) × 107 dm3mol-1s-1; log (A/dm3mol-1s-1) = 10.37 ± 0.10
Ea = 25.6 kJ mol-1 for T = 283 K to 343 K
kD, A and Ea from: Mezyk, S.P., and Bartels, D.M. J. Chem. Soc.Faraday Trans., 1995, 91, 3127.
Hydrogen peroxide – H2O2
Percival, P.W., Brodovitch, J.C. and Newman, E.
NBS – Special Publication (U.S.), 1986, 716, 547.
Reaction: H2O2 + Mu → MuH + HO2
H2O2 + Mu → MuO + D2O
Type of reaction: abstraction of H or O (H atom abstraction proposed for H atom reaction)
kM = 1.65 × 109 dm3mol-1s-1 pH ~ 3.0
Ea = 5.8 kJ mol--1 for T = 275K to 322K
KIE = kM / kH = 1.65 × 109 / 4.6 × 107 ≈ 36
kH = (4.6 ± 0.1) × 107 dm3mol-1s-1 average of three latest values from: www.rcdc.nd.edu/compilations/Hatom/H.HTM
Ea given in the Notre Dame Data Base varies from 11 kJ mol-1 to 21 kJ mol-1
Oxygen – O2
a. Roduner, E., Tregenna-Pigott, P.L.W., Digler, H., Ehrensberger, K. and Senba, M.
J. Chem. Soc., Faraday Trans., 1995, 91, 1935.
Reaction: O2 + Mu + (↑↑) ® Mu (↑↓)+ O2 kSE
O2 + Mu ® MuO2 kCR
Type of reaction: spin exchange (SE) and chemical reaction (CR)
kSE >> kCR
kMobs = (1.8 ± 0.1) × 1010 dm3mol-1s-1 at 297 K
kMobs = (3.3 ± 0.3) × 1010 dm3mol-1s-1 at 318 K
kMobs = (4.8 ± 0.6) × 1010 dm3mol-1s-1 at 343 K
kMobs = (4.3 ± 0.9) × 1010 dm3mol-1s-1 at 358 K
Ea » 2.6 kJ mol-1 calculated on the basis of authors’s data (4 points)
Experimental method: MSR in transverse and longtidual fields for separation chemical process and spin exchange
b) Jean, Y.C., Fleming, D.G., Ng, B.W. and Walker, D.C. Chem. Phys. Lett., 1979, 66, 187.
Reaction: O2 + Mu (↑↑) ® Mu (↑↓)+ O2 – spin exchange
Mu + O2 ® MuO2 (or m+ + O2-, or MuO + O) chemical reaction
kMobs= (2.4 ± 0.5) × 1010 dm3mol-1s-1
kMobs= (2.1 ± 0.5) × 1010 dm3mol-1s-1 average from ref a) and b)
KIE = kMobs / kH = 2.1 × 1010 / 1.2 × 1010 = 1.8
if latest value kH =2 × 1010 dm3mol-1s-1 is taken, then
KIE = kMobs / kH = 2.1 × 1010/ 2.0 × 1010 » 1
kH = 2.0 × 1010 dm3mol-1s-1
from: Han, P. and Bartels, D.M. in Ultrafast Reaction Dynamics ed. Gauduel, Y. and Rossky, P.J., AIP Conference Proceedings 298, American Institute of Physics, N.Y. 1991.(latest value published)
kH = 1.2 × 1010 dm3mol-1s-1 selected value from: www.rcdc.nd.edu/compilations/Hatom/H.HTM
Thiosulphate ion – S2O32- as Na2S2O3
Venkateswaran, K., Barnabas, M.V., Ng, B.W. and Walker, D.C.
Can. J. Chem., 1988, 66, 1979.
Reaction: S2O32- + Mu → ?
Type of reaction: ?
kM = 2.6 × 1010 dm3mol-1s-1
kH – unknown
KIE – not available
Muonium reactions in the micellar systems
kM = 2.1 × 1010 dm3mol-1s-1 in the SDDS micelles; average of 3 values
from: Venkateswaran, K., Barnabas, M.V., Ng, B.W. and Walker, D.C., Can. J. Chem., 1988, 66, 1979.
Thallium (I) ion – Tl+ as Tl2SO4
Jean, Y.C., Brewer, J.H., Fleming, D.G., Garner, D.M., Mikula, R.J., Vaz, L.C.
and Walker, D.C. Chem. Phys. Lett., 1978, 57, 293.
Reaction: Tl+ + Mu → Tl° + m+
Type of reaction: reduction (electron transfer)
kM = 8 x 108 dm3mol-1s-1
KIE = kM / kH = 8 × 108 / 4 × 107 = 20
kH = 4.1 × 107 dm3mol-1s-1 average of 2 values
from: www.rcdc.nd.edu/compilations/Hatom/H.HTM
Muonium reactions in the micellar systems
kM = 3.2 × 109 dm3mol-1s-1 in the SDDS micelles; [Tl+] = 0.4 mM [SDDS] = 0.5 mM
from: Venkateswaran, K., Barnabas, M.V., Ng, B.W. and Walker, D.C., Can. J. Chem., 1988, 66, 1979.
Deuteroperoxyanion – DO2-
Percival, P.W., Brodovitch, J.C. and Newman, K.E.
NBS Special Publication (US) 1986, 716, 547.
Reaction:
DO- + Mu → MuD + O-
DO- + Mu ® MuO + OD-
Type of reaction: D or O abstraction (D abstraction proposed for D atom reaction)
kM = 4.5 x 109 dm3mol-1s-1 pH = 12.6
E = 10.5 kJ mol-1
KIE = kM / kD = 4.5 × 109 / 2.1 × 109 = 2
kD = 2.12 × 109 dm3mol-1s-1
from: Mezyk, S.P., and Bartels, D.M. J. Chem. Soc.Faraday Trans., 1995, 91, 3127
Hydroperoxyanion – HO2-
Percival, P.W., Brodovitch, J.C. and Newman, E.
NBS – Special Publication (U.S.), 1986, 716, 547.
Reaction:
HO2- + Mu → MuH + O2-
HO2- + Mu → MuO + OH-
Type of reaction: abstraction of H or O
kM = 5.0 × 109 dm3mol-1s-1 pHmax = 12.4
Ea = 10.5 kJ mol-2
KIE = kM / kH = 5.0 × 109 / 1.25 × 109 = 4
kH = (1.24 ± 0.14) × 109 dm3mol-1s-1 at pH = 11.5 log A (dm3mol-1s-1) = 13.65 ± 0.30
EA = (17.3 ± 0.6) kJ mol-1 for T = 280 K to 315 K
from: Mezyk, S.P. and Bartels, D.M. J. Chem. Soc. Faraday Trans., 1995, 91, 3127.